

Exploiting the art of the possible in automating simulation workflows

Extended solve times...

• This model took a week to run on 32 cores

Increased testing overhead

EXPERIENCE MATTERS

So what are we after with simulation?

 The most cost effective insight or design improvement suggestion

There are no prizes for big or impressive simulation models

The rewards on the other axis may be easier to achieve

TECHNIA

The rewards on the other axis may be easier to achieve

• But require different approaches to model building, methods development and integration across the engineering process

The rewards on the other axis may be easier to achieve

ΗΝΙΔ

 But require different approaches to model building, methods development and integration across the engineering process

Breaking out of the cycle - Geometry

- Don't be a slave to geometry
- Idealisation is the key to efficiency and success – you are after a useful answer not a megaplot
- Geometry fed into the system needs to be managed and controlled
- Don't be afraid to separate the CAD model and the simulation "geometry"

Breaking out of the cycle - Geometry

- Don't be a slave to geometry
- Certainly don't be a slave to bad geometry
- Automatic model clean up and simplification

Geometry clean-up and meshing

Envelope (max abs)

Breaking out of the cycle - Meshing

• If you don't know the mesh is important don't do FEA

Geometry clean-up and meshing

Breaking out of the cycle - Meshing

• The science bit..

Getting the mesh right – an aside..

EXPERIENCE MATTERS

Getting the mesh right – an aside..

Freudenberg Oil & Gas Technologies

Breaking out of the cycle - Meshing

Rules based meshing

Automatically recognises geometric features and applies appropriate pre-defined meshes to them

▼ All Parameters	▼ All Parameters _ ×	▼ All Parameters _ ×
Initialize with:	Initialize with:	Initialize with:
▼ Mesh	▶ Mesh	▶ Mesh
Element order:	▼ Geometry	▶ Geometry
Mesh size 5mm	Angle between faces: 20deg	▼ Feature
Absolute sag: No sag	Angle between curves: 20deg	Feature type: 🚺 3D Holes 🔻
Proportional sag: No sag	Curvature angle: 20deg	2 🛢 🛛 🖻
Narrow regions treatment None Growth ratio on Surface: 1.41 Growth ratio in Volume: 1	Simplify geometry under: <u>1mm</u> fx Remove logos Maxin ight: <u>2mm</u> Maxin ze: <u>30mm</u>	List [0mm, 10mm]
▶ Geometry	▶ Fea	
Feature OK Cancel	OK Cancel	Check Check

EXPERIENCE MATTERS

Breaking out of the cycle – Trouble shooting/debugging

- Troublesome solutions kill automation schemes
- Solutions must be well developed and scoped to succeed
- Limit scope to increase delivery/yield/performance
- It really helps to have a decent solver
- Repeated fails will lose the "hearts and minds" battle with users

Post processing, report generation and dissemination

- Automated systems need automated results presentation
- No escaping the expert gaze
- Distribution and dissemination
- Are yes/no pass/fail indicators any value?
- Data exploration

TECHNIA

Enabling Technologies

- Templating
- Scripting
- Process mapping
- New skill sets for experienced analysts

But the big enabler is people..

- Skilled staff are required to create the automation schemes
 They need specific skills
- Enabled staff are required to operate and use the automated systems
 - -They need a general awareness and overall confidence in the technology and its application

• It's a battle for hearts and minds.

6 golden rules for building simulation models

- Keep your eyes on the prize: Every simulation project needs to have a target, What
 information is the model going to provide and with what accuracy? Write it down.
 Stick it up by your monitor.
- **Start simple:** Use geometry that can be simplified, modified, and developed. And its not just geometry that should start simple..
- **Don't be a show off.** If it isn't critical to getting the result you are looking for don't include it.
- Be aware of what your model can tell you. And what it can't.. Don't forget this is engineering.
- If a trick made a model work in a previous study, don't be a slave to it.
- Meshes still matter

And these rules are even more important in automation projects